123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- package tencentsig
-
- // @see https://github.com/ThePiachu/Golang-Koblitz-elliptic-curve-DSA-library/blob/master/bitelliptic/bitelliptic.go
-
- import (
- "crypto/elliptic"
- "io"
- "math/big"
- "sync"
- )
-
- // A BitCurve represents a Koblitz Curve with a=0.
- // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
- type BitCurve struct {
- P *big.Int // the order of the underlying field
- N *big.Int // the order of the base point
- B *big.Int // the constant of the BitCurve equation
- Gx, Gy *big.Int // (x,y) of the base point
- BitSize int // the size of the underlying field
- }
-
- func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
- return &elliptic.CurveParams{P: BitCurve.P, N: BitCurve.N, B: BitCurve.B, Gx: BitCurve.Gx, Gy: BitCurve.Gy, BitSize: BitCurve.BitSize}
- }
-
- // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
- func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
- // y² = x³ + b
- y2 := new(big.Int).Mul(y, y) //y²
- y2.Mod(y2, BitCurve.P) //y²%P
-
- x3 := new(big.Int).Mul(x, x) //x²
- x3.Mul(x3, x) //x³
-
- x3.Add(x3, BitCurve.B) //x³+B
- x3.Mod(x3, BitCurve.P) //(x³+B)%P
-
- return x3.Cmp(y2) == 0
- }
-
- //TODO: double check if the function is okay
- // affineFromJacobian reverses the Jacobian transform. See the comment at the
- // top of the file.
- func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
- zinv := new(big.Int).ModInverse(z, BitCurve.P)
- zinvsq := new(big.Int).Mul(zinv, zinv)
-
- xOut = new(big.Int).Mul(x, zinvsq)
- xOut.Mod(xOut, BitCurve.P)
- zinvsq.Mul(zinvsq, zinv)
- yOut = new(big.Int).Mul(y, zinvsq)
- yOut.Mod(yOut, BitCurve.P)
- return
- }
-
- // Add returns the sum of (x1,y1) and (x2,y2)
- func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- z := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
- }
-
- // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
- // (x2, y2, z2) and returns their sum, also in Jacobian form.
- func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
- z1z1 := new(big.Int).Mul(z1, z1)
- z1z1.Mod(z1z1, BitCurve.P)
- z2z2 := new(big.Int).Mul(z2, z2)
- z2z2.Mod(z2z2, BitCurve.P)
-
- u1 := new(big.Int).Mul(x1, z2z2)
- u1.Mod(u1, BitCurve.P)
- u2 := new(big.Int).Mul(x2, z1z1)
- u2.Mod(u2, BitCurve.P)
- h := new(big.Int).Sub(u2, u1)
- if h.Sign() == -1 {
- h.Add(h, BitCurve.P)
- }
- i := new(big.Int).Lsh(h, 1)
- i.Mul(i, i)
- j := new(big.Int).Mul(h, i)
-
- s1 := new(big.Int).Mul(y1, z2)
- s1.Mul(s1, z2z2)
- s1.Mod(s1, BitCurve.P)
- s2 := new(big.Int).Mul(y2, z1)
- s2.Mul(s2, z1z1)
- s2.Mod(s2, BitCurve.P)
- r := new(big.Int).Sub(s2, s1)
- if r.Sign() == -1 {
- r.Add(r, BitCurve.P)
- }
- r.Lsh(r, 1)
- v := new(big.Int).Mul(u1, i)
-
- x3 := new(big.Int).Set(r)
- x3.Mul(x3, x3)
- x3.Sub(x3, j)
- x3.Sub(x3, v)
- x3.Sub(x3, v)
- x3.Mod(x3, BitCurve.P)
-
- y3 := new(big.Int).Set(r)
- v.Sub(v, x3)
- y3.Mul(y3, v)
- s1.Mul(s1, j)
- s1.Lsh(s1, 1)
- y3.Sub(y3, s1)
- y3.Mod(y3, BitCurve.P)
-
- z3 := new(big.Int).Add(z1, z2)
- z3.Mul(z3, z3)
- z3.Sub(z3, z1z1)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Sub(z3, z2z2)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Mul(z3, h)
- z3.Mod(z3, BitCurve.P)
-
- return x3, y3, z3
- }
-
- // Double returns 2*(x,y)
- func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- z1 := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
- }
-
- // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
- // returns its double, also in Jacobian form.
- func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
-
- a := new(big.Int).Mul(x, x) //X1²
- b := new(big.Int).Mul(y, y) //Y1²
- c := new(big.Int).Mul(b, b) //B²
-
- d := new(big.Int).Add(x, b) //X1+B
- d.Mul(d, d) //(X1+B)²
- d.Sub(d, a) //(X1+B)²-A
- d.Sub(d, c) //(X1+B)²-A-C
- d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
-
- e := new(big.Int).Mul(big.NewInt(3), a) //3*A
- f := new(big.Int).Mul(e, e) //E²
-
- x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
- x3.Sub(f, x3) //F-2*D
- x3.Mod(x3, BitCurve.P)
-
- y3 := new(big.Int).Sub(d, x3) //D-X3
- y3.Mul(e, y3) //E*(D-X3)
- y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
- y3.Mod(y3, BitCurve.P)
-
- z3 := new(big.Int).Mul(y, z) //Y1*Z1
- z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
- z3.Mod(z3, BitCurve.P)
-
- return x3, y3, z3
- }
-
- //TODO: double check if it is okay
- // ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
- func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
- // We have a slight problem in that the identity of the group (the
- // point at infinity) cannot be represented in (x, y) form on a finite
- // machine. Thus the standard add/double algorithm has to be tweaked
- // slightly: our initial state is not the identity, but x, and we
- // ignore the first true bit in |k|. If we don't find any true bits in
- // |k|, then we return nil, nil, because we cannot return the identity
- // element.
-
- Bz := new(big.Int).SetInt64(1)
- x := Bx
- y := By
- z := Bz
-
- seenFirstTrue := false
- for _, b := range k {
- for bitNum := 0; bitNum < 8; bitNum++ {
- if seenFirstTrue {
- x, y, z = BitCurve.doubleJacobian(x, y, z)
- }
- if b&0x80 == 0x80 {
- if !seenFirstTrue {
- seenFirstTrue = true
- } else {
- x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z)
- }
- }
- b <<= 1
- }
- }
-
- if !seenFirstTrue {
- return nil, nil
- }
-
- return BitCurve.affineFromJacobian(x, y, z)
- }
-
- // ScalarBaseMult returns k*G, where G is the base point of the group and k is
- // an integer in big-endian form.
- func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
- return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
- }
-
- var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
-
- //TODO: double check if it is okay
- // GenerateKey returns a public/private key pair. The private key is generated
- // using the given reader, which must return random data.
- func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
- byteLen := (BitCurve.BitSize + 7) >> 3
- priv = make([]byte, byteLen)
-
- for x == nil {
- _, err = io.ReadFull(rand, priv)
- if err != nil {
- return
- }
- // We have to mask off any excess bits in the case that the size of the
- // underlying field is not a whole number of bytes.
- priv[0] &= mask[BitCurve.BitSize%8]
- // This is because, in tests, rand will return all zeros and we don't
- // want to get the point at infinity and loop forever.
- priv[1] ^= 0x42
- x, y = BitCurve.ScalarBaseMult(priv)
- }
- return
- }
-
- // Marshal converts a point into the form specified in section 4.3.6 of ANSI
- // X9.62.
- func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
- byteLen := (BitCurve.BitSize + 7) >> 3
-
- ret := make([]byte, 1+2*byteLen)
- ret[0] = 4 // uncompressed point
-
- xBytes := x.Bytes()
- copy(ret[1+byteLen-len(xBytes):], xBytes)
- yBytes := y.Bytes()
- copy(ret[1+2*byteLen-len(yBytes):], yBytes)
- return ret
- }
-
- // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
- // error, x = nil.
- func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
- byteLen := (BitCurve.BitSize + 7) >> 3
- if len(data) != 1+2*byteLen {
- return
- }
- if data[0] != 4 { // uncompressed form
- return
- }
- x = new(big.Int).SetBytes(data[1 : 1+byteLen])
- y = new(big.Int).SetBytes(data[1+byteLen:])
- return
- }
-
- //curve parameters taken from:
- //http://www.secg.org/collateral/sec2_final.pdf
-
- var initonce sync.Once
- var secp160k1 *BitCurve
- var secp192k1 *BitCurve
- var secp224k1 *BitCurve
- var secp256k1 *BitCurve
-
- func initAll() {
- initS160()
- initS192()
- initS224()
- initS256()
- }
-
- func initS160() {
- // See SEC 2 section 2.4.1
- secp160k1 = new(BitCurve)
- secp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
- secp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
- secp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
- secp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
- secp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
- secp160k1.BitSize = 160
- }
-
- func initS192() {
- // See SEC 2 section 2.5.1
- secp192k1 = new(BitCurve)
- secp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
- secp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
- secp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
- secp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
- secp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
- secp192k1.BitSize = 192
- }
-
- func initS224() {
- // See SEC 2 section 2.6.1
- secp224k1 = new(BitCurve)
- secp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
- secp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
- secp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
- secp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
- secp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
- secp224k1.BitSize = 224
- }
-
- func initS256() {
- // See SEC 2 section 2.7.1
- secp256k1 = new(BitCurve)
- secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
- secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
- secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
- secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
- secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
- secp256k1.BitSize = 256
- }
-
- // S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
- func S160() *BitCurve {
- initonce.Do(initAll)
- return secp160k1
- }
-
- // S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
- func S192() *BitCurve {
- initonce.Do(initAll)
- return secp192k1
- }
-
- // S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
- func S224() *BitCurve {
- initonce.Do(initAll)
- return secp224k1
- }
-
- // S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
- func S256() *BitCurve {
- initonce.Do(initAll)
- return secp256k1
- }
|